M ay 2 00 1 Separation of variables for the A 3 elliptic Calogero - Moser system
نویسنده
چکیده
We consider the classical elliptic Calogero-Moser model. A set of canonical separated variables for this model has been constructed in [1]. However, the generating function of the separating canonical transform is known only for two-and three-particle cases [1]. We construct this generating function for the next A 3 case as the limit of the conjectured form of the quantum separating operator. We show explicitly that this generating function gives a canonical transform from the set of original variables to the separated ones.
منابع مشابه
Separation of variables for the Ruijsenaars system
We construct a separation of variables for the classical n-particle Ruijsenaars system (the relativistic analog of the elliptic Calogero-Moser system). The separated coordinates appear as the poles of the properly normalised eigenvector (Baker-Akhiezer function) of the corresponding Lax matrix. Two different normalisations of the BA functions are analysed. The canonicity of the separated variab...
متن کاملar X iv : m at h / 03 10 49 0 v 1 [ m at h . A G ] 3 1 O ct 2 00 3 FROM SOLITONS TO MANY – BODY SYSTEMS
We present a bridge between the KP soliton equations and the Calogero–Moser many-body systems through noncommutative algebraic geometry. The Calogero-Moser systems have a natural geometric interpretation as flows on spaces of spectral curves on a ruled surface. We explain how the meromorphic solutions of the KP hierarchy have an interpretation via a noncommutative ruled surface. Namely, we iden...
متن کاملar X iv : m at h - ph / 0 51 00 70 v 3 2 4 O ct 2 00 5 The Variable Coefficient Hele - Shaw Problem , Integrability and Quadrature Identities Igor
The theory of quadrature domains for harmonic functions and the Hele-Shaw problem of the fluid dynamics are related subjects of the complex variables and mathematical physics. We present results generalizing the above subjects for elliptic PDEs with variable coefficients, emerging in a class of the free-boundary problems for viscous flows in non-homogeneous media. Such flows posses an infinite ...
متن کاملar X iv : m at h - ph / 0 51 00 70 v 2 1 9 O ct 2 00 5 The Variable Coefficient Hele - Shaw Problem , Integrability and Quadrature Identities
The theory of quadrature domains for harmonic functions and the Hele-Shaw problem of the fluid dynamics are related subjects of the complex variables and mathematical physics. We present results generalizing the above subjects for elliptic PDEs with variable coefficients, emerging in a class of the free-boundary problems for viscous flows in non-homogeneous media. Such flows posses an infinite ...
متن کاملar X iv : m at h - ph / 0 51 00 70 v 1 1 9 O ct 2 00 5 The Variable Coefficient Hele - Shaw Problem , Integrability and Quadrature Identities
The theory of quadrature domains for harmonic functions and the Hele-Shaw problem of the fluid dynamics are related subjects of the complex variables and mathematical physics. We present results generalizing the above subjects for elliptic PDEs with variable coefficients, emerging in a class of the free-boundary problems for viscous flows in non-homogeneous media. Such flows posses an infinite ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001